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SPEDEN is a computer program that reconstructs the electron density of single

particles from their X-ray diffraction patterns, using a single-particle adaptation

of the holographic method in crystallography [SzoÈ ke, SzoÈ ke & Somoza (1997).

Acta Cryst. A53, 291±313]. The method, like its parent, is unique because it does

not rely on `back' transformation from the diffraction pattern into real space and

on interpolation within measured data. It is designed to deal successfully with

sparse, irregular, incomplete and noisy data. It is also designed to use prior

information for ensuring sensible results and for reliable convergence. This

article describes the theoretical basis for the reconstruction algorithm, its

implementation, and quantitative results of tests on synthetic and experimen-

tally obtained data. The program could be used for determining the structures of

radiation-tolerant samples and, eventually, of large biological molecular

structures without the need for crystallization.

1. Introduction

This paper describes our computer program SPEDEN, which

reconstructs the density from the diffraction patterns of indi-

vidual particles. SPEDEN is of interest for three reasons.

Diffractive imaging promises to improve the resolution,

sensitivity and practical wavelength range in X-ray microscopy

for three-dimensional objects that are tolerant to X-rays. A

few examples are defects in semiconductor structures, phase

separation in alloys, nanoscale machines and laser fusion

targets. A long-term vision is the possibility of high-resolution

reconstruction of diffraction patterns of single biomolecules.

Of broad theoretical interest is SPEDEN's unique approach

to the reconstruction of scatterers ± a dif®cult mathematical

problem. In the rest of this section, we expand on these three

topics.

Reconstruction of the electron density from non-uniformly

sampled three-dimensional diffraction patterns is of wide

interest and applicability with present-day sources. In radia-

tion-tolerant samples, X-ray diffraction and diffraction

tomography are capable of higher resolution than (straight- or

cone-beam) tomography alone. In tomography, resolution is

limited by the quality of the incident beam and by the spatial

resolution of the detector; in diffraction, the resolution can be

as ®ne as the wavelength of the incident radiation. Experi-

mentally, diffraction imaging has already produced X-ray

images at higher resolution than possible with available X-ray

optics (Miao et al., 1999; He et al., 2003). The price to be paid

for these bene®ts is the intrinsic dif®culty of the reconstruc-

tion. Nevertheless, several successful reconstructions from

experimental X-ray data, using the iterative hybrid input±

output version of the Gerchberg±Saxton±Fienup (GSF)

algorithm, have been reported recently (Miao et al., 2002;

Marchesini et al., 2003). The ®rst successful application of this

algorithm to electron diffraction data was reported in 2001

(Weierstall et al., 2002), and it has been used more recently to

produce the ®rst atomic resolution image of a single carbon

nanotube (Zuo et al., 2003). In biology, the use of the GSF has

recently been shown to dramatically reduce the number of

images needed for tomographic cryo-electron-microscopy of

protein monolayer crystals, so that phasing can be based

mainly on the three-dimensional diffraction data (Spence et

al., 2003).

The development of SPEDEN was also prompted by the

promise of new ways to image biomolecules. Free-electron

lasers can, in principle, provide X-ray pulses of tens to

hundreds of femtoseconds in length and brightness up to ten

orders of magnitude greater than synchrotron radiation. It was

predicted that, under such circumstances, it should be possible

to dispense with crystals and reconstruct the electron density



of single biological particles from their diffraction pattern

(Neutze et al., 2000). In proposed experiments, a large number

of single particles will be injected into the X-ray beam in

random orientation and their diffraction patterns will be

recorded, each in a single shot of the free-electron laser. Such

diffraction patterns will be very noisy and their resolution will

be limited by the signal-to-noise (S/N) ratio. The measured

diffraction patterns that correspond to different orientations

of the particle will be classi®ed into a number of mutually

exclusive classes. The images within each class will then be

averaged and the class averages assembled into a three-

dimensional diffraction pattern by ®nding the mutual orien-

tation of the individual diffraction patterns. Finally, the three-

dimensional diffraction pattern will be reconstructed to yield

the electron density of the molecule.

We have worked on the analysis of all three steps of such

an experiment. The essence of the ®rst analysis is that the

maximum X-ray intensity at a given pulse length is limited by

the requirement that the molecule stay intact during the pulse,

even though it eventually disintegrates (Hau-Riege et al.,

2004). The second analysis discusses the division of noisy

diffraction patterns into a number of distinct classes. If the

images are divided into too few classes, the available resolu-

tion is not realized. If the patterns are divided into too many

classes, the class averages will be poor and the pattern quality

suffers. The individual class averages, each corresponding to a

well de®ned orientation of the particle, will be assembled into

a three-dimensional diffraction pattern. The result will be a

three-dimensional diffraction pattern that is measured at a

limited number of orientations. It will be, therefore, sparse and

irregular and will have a limited signal-to-noise ratio (Huldt et

al., 2003).

The program SPEDEN, described in this paper, provides a

way to optimally determine the electron density from such

a three-dimensional ensemble of continuous diffraction

patterns. We ®rst give an analysis of their properties and

discuss the methods and the expected dif®culties of recon-

structing a `sensible' electron density from them. We then

describe how SPEDEN adapts the holographic method

(SzoÈ ke, 1997) in crystallography to deal with continuous

diffraction patterns as opposed to discrete Bragg spots; this

will be discussed in the next section. We then report quanti-

tative results of preliminary tests for verifying the correctness

of our method. These tests use computed and measured

diffraction patterns from samples of inorganic particles.1

2. SPEDEN: the method

2.1. Theoretical considerations

2.1.1. Mathematical background. The reconstruction of the

density of scatterers from its diffraction pattern is an `inverse

problem'. Other well studied inverse problems are those of

computed tomography, image deblurring, phase recovery in

astronomy, and crystallography. In tomography, for example,

an inversion algorithm (e.g. ®ltered back projection) is used to

recover the density of scatterers from the measured tomo-

grams. It is widely recognized that the reconstructed density is

very sensitive to inaccuracies in the measurement. Small

errors in the diffraction pattern cause large errors in the

reconstruction. This property is called ill posedness or ill

conditioning.

The reconstruction of the electron density from X-ray

diffraction patterns is indeed ill conditioned. It also has two

additional dif®culties. First, in contrast to tomography, there

are no direct inversion algorithms ± not even approximate

ones. Second, the reconstructed electron density at any sample

point is in¯uenced strongly by the electron densities of all

sample points, as opposed to a limited number of them.

Therefore, errors in density are non-local and `propagate' far.

Fortunately, very good fundamental discussions of these

subjects are provided in the books of Daubechies (1992),

Bertero and Boccacci (Bertero, 1989; Bertero & Boccacci,

1998) and Natterer (Natterer, 1996; Natterer & WuÈ bbeling,

2001). In somewhat simpli®ed terms, the reconstruction of the

electron density is similar to ®nding the inverse of an ill

conditioned non-square matrix, a subject thoroughly discussed

in Golub & van Loan (1996). We consider these mathematical

properties to be essential for understanding the successes and

limitations of reconstruction algorithms; we will try to be fully

cognizant of them in the discussion that follows.

2.1.2. The phase problem of crystallography, oversampling.

The crystallographic phase problem is a good starting point for

further discussion. It was ®rst realized by Sayre (1952) that the

number of observable complex structure factors, limited by

the Bragg condition, is equivalent to a critical sampling of the

electron density in the unit cell of the crystal. The sampling

theorem of Whittaker and Shannon teaches us that, if the

amplitudes and phases of all the diffraction peaks were

accurately measured, the electron density could, in principle,

be reconstructed everywhere (Bricogne, 1992). Unfortunately,

only the amplitudes of the Bragg re¯ections are measured, not

their phases. Therefore there is not enough information in the

diffraction pattern for a unique reconstruction of the electron

density. Sayre (1980) proposed that if we could measure the

diffraction amplitudes `in between' the Bragg peaks, we

should have enough information to reconstruct the electron

density, or to `phase' the diffraction pattern. This is exactly the

situation in diffraction from a single particle.

Nevertheless, it is still dif®cult to reconstruct the electron

density, even from a well `oversampled' diffraction pattern.

One corollary of critical sampling is that the amplitudes and

phases of the Bragg re¯ections of a crystal are independent of

one other, but any structure factor in between them depends

on the surrounding ones to some extent. Therefore, too much

oversampling does not help to obtain independent data,

although it does improve the S/N ratio by reducing the noise.

Ill posedness is still with us, although with oversampling the

error propagates less. An additional dif®culty with diffraction

patterns from a set of discrete orientations of a particle is that

at low resolution the diffraction pattern is well oversampled

while at high resolution the sampling is sparse. A fundamental
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property of diffraction is that the position and the handedness

of the electron density are undetermined, resulting sometimes

in stagnation of the algorithm and drift in the position of the

results (Stark, 1987).

There are two well known necessary remedies for the lack

of information and for the ill posedness of the reconstruction

problem. The more important one is the need for more

information. For example, one way to include a priori

knowledge is to accept reconstructed electron densities only if

they are `reasonable'. The second remedy is to use `stabilized'

or pseudo-inversion algorithms. In the next section, we

introduce our version of a real-space reconstruction algor-

ithm; we will argue that our algorithm deals with all these

problems optimally, at least in some sense. We return to the

comparison of our algorithm with other methods for phase

recovery in x2.3.

2.2. Details of SPEDEN, a real-space algorithm

In this section, we outline the workings of our reconstruc-

tion program, SPEDEN. SPEDEN uses a real-space method

for reconstruction; its acronym stands for single-particle

electron density. For computational ef®ciency, the particle to

be recovered is put into a ®ctitious unit cell that is several

times larger than the particle itself. All reconstruction algor-

ithms use this arti®ce in order to be able to calculate structure

factors by fast Fourier transform (FFT) techniques. The

resulting similarity with crystallography enables the use of

many crystallographic concepts. In fact, the recognition of this

similarity enabled us to write SPEDEN based on our crys-

tallographic program, EDEN, with relatively small modi®ca-

tions.

The most signi®cant difference between the two programs is

that in crystallography the Bragg condition restricts the reci-

procal-lattice vectors to integer values, while the continuous

diffraction pattern can be ± and usually is ± measured at

arbitrary non-integer values of the reciprocal-lattice vectors.

In SPEDEN, in common with EDEN, the (unknown)

electron density is represented by a set of Gaussian basis

functions, with unknown amplitudes, that ®ll the ®ctitious unit

cell uniformly. This way the recovery is reduced to the solution

of a large set of quadratic equations. The program `solves'

these equations by ®nding the number of electrons in each

basis function so as to agree optimally with the measured

diffraction intensities as well as with other `prior knowledge'.

Prior knowledge includes the emptiness of the unit cell outside

the molecule, the positivity of the electron density, possibly

some low-resolution image of the object etc. Each one of those

conditions is described by a cost function that measures the

deviation of the calculated data from the observed data. One

of the cost functions describes the deviation of the calculated

diffraction pattern from the measured one; others depend on

the deviation of the recovered density from prior knowledge.

Measured data are weighted by their certainty (inverse

uncertainty), other prior knowledge is weighted by its `relia-

bility'. The mathematical method used is (constrained)

conjugate-gradient optimization of the sum of cost functions.

At each step of the optimization, there is a set of amplitudes

available that describe the current electron density in the full

unit cell. A full set of structure factors is calculated by Fourier

transforming the current electron density. When the unit cell is

larger than the particle, the structure factors can be stably

interpolated to compare them with measured structure-factor

amplitudes.

We refer to the cited literature that shows that the proce-

dure we outlined is equivalent to a stabilized (quasi) solution

of the inverse problem (Daubechies, 1992; Bertero &

Boccacci, 1998; Natterer & Wubbeling, 2001). As such, it is

optimally suited for sparse, irregular, incomplete and noisy

data.

In the following subsections, we describe very brie¯y the

common features of EDEN and SPEDEN as well as their

differences. A more complete description of EDEN can be

found in previous papers (SzoÈ ke, 1997, 1998).
2.2.1. Representation of the electron density. The electron

density is represented as a sum of basis functions, adapted to

the resolution of the data. Speci®cally, we take little Gaussian

`blobs' of width comparable to the resolution, and put their

centers on a regular grid that ®lls the `unit cell' and whose grid

spacing is comparable to the resolution. The amplitudes of the

Gaussians are proportional to the local electron density. In

fact, the number of electrons contained in each Gaussian

constitutes the set of our basic unknowns. The above is

identical to the representation of the electron density in

EDEN.

Some mathematical details follow. The actual formula for

the representation of the electron density as a sum of Gaus-

sians is

�unknown�r� �
1

����r2�3=2

XP

p�1

n�p� exp
ÿjrÿ r�p�j2

��r2

� �
: �1�

The centers of the Gaussians are positioned at grid points,

r(p), where p is a counting index. In our ®ctitious unit cell, the

grid is orthogonal, the grid spacing is �r and the centers of the

Gaussians are usually on two intercalating (body-centered)

grids for best representation of the electron density. The

number �, of the order unity, determines the width of the

Gaussians relative to their spacing, �r. Finally and most

importantly, n(p) is the unknown number of electrons in the

vicinity of the grid point r(p). The values of n(p) are real, and

in future may also be complex valued to allow for photo-

absorption in addition to scattering. (Photoabsorption can be

signi®cant when diffraction measurements are made at longer

X-ray wavelengths.)

Given n(p), the structure factors can be calculated by

Fcalc�h� � exp�ÿ����rjF Thj�2�PP
p�1

n�p� exp�2�ih � F r�p��;

�2�
using a fast Fourier transform. The vector h, a triplet of

integers, denotes the reciprocal-lattice vector, the operator F
transforms from real-space (Cartesian) coordinates to frac-

tional coordinates, and F T denotes the dual transformation.



The constants appearing in equations (1) and (2) were

discussed in some detail previously (SzoÈ ke et al., 1997). For

completeness, we de®ne them here. The crystallographic B

factor is given by B � �2��r�2�. The `crystallographic reso-

lution', d, determines the grid spacing, �r, by the relation

�r � fspaced, where fspace is a constant of the order unity. For a

body-centered lattice, we set fspace = 0.7 and � = 0.6. For a

simple lattice, we use fspace = 0.6 and � = 0.8.

Note that the Gaussian basis functions are not used in a

one-to-one correspondence with single atoms but are simply

used to describe the three-dimensional electron density at the

resolution that is appropriate to the data resolution. In the

special case that the resolution was about the size of an atom

and an atom happened to be sitting exactly on a grid point,

that atom would be represented by a single basis function. If

the atom is not on a grid point, or if the atom happens to be

smeared out because of thermal motion, that same atom

would be represented by many basis functions. Similarly, at

lower resolution, a single basis function represents assemblies

of atoms.

2.2.2. Reciprocal-space knowledge. The measured diffrac-

tion pattern of the molecule is proportional to the absolute

square of the structure factors. In SPEDEN, we do account for

the curvature of the Ewald sphere. There are two subtle

points: the diffraction pattern is measured only in a ®nite

number of directions, H(i); and, as a rule, those directions are

not along the reciprocal-lattice vectors of the (®ctitious) unit

cell. In other words, the measurement directions, H(i), are

usually not integers and they are not uniformly distributed in

reciprocal space. This is the main difference between crystal-

lography and single-particle diffraction and, therefore,

between EDEN and SPEDEN. The essence of any recon-

struction algorithm is to try to ®nd an electron-density

distribution such that the calculated diffraction pattern

matches the observed one. In our representation, we try to

®nd a set of n(p) such that

jFobs�H�i��j2 � jFcalc�H�i��j2 �3�
for each measurement direction H(i). Let us assume for a

moment that H(i) are integers. When the representation of the

unknown density is substituted from (2), for each measured

value of H(i), (3) becomes a quadratic equation in the

unknowns, n(p). The number of equations is the number of

measured diffraction intensities. It is usually not equal to the

number of independent unknowns that are the number of grid

points in the unit cell. The equations usually contain incon-

sistent information owing to experimental errors. The equa-

tions are also ill conditioned and therefore their solutions are

extremely sensitive to noise in the data. Under these condi-

tions, the equations may have many solutions or, more usually,

no solution at all. Our way of circumventing these problems is

to obtain a `quasi-solution' of (3) by minimizing the dis-

crepancy or cost function (see e.g. Stark, 1987; Bertero &

Boccacci, 1998):

�Speden �
P

i

w0�H�i��2�jFobs�H�i��j ÿ jFcalc�H�i��j�2: �4�

The weights, w0�H�i��2, are usually set to be proportional to the

inverse square of the uncertainty of the measured structure

factors, 1=��H�i��2. As discussed by SzoÈ ke (1999), this is

equivalent to a maximum-likelihood solution of the equations.

Let us now discuss the ®rst, previously ignored, dif®culty

in the reconstruction. When we try to reconstruct the elec-

tron density from real experimental data, we have to

compare the set of measured |Fobs(H(i))|, where H(i) are not

necessarily integers, with the calculated structure-factor

amplitudes, |Fcalc(h)|, that are on a regular grid, i.e. have

integer h. In principle, given an electron density of the

molecule, one could calculate the structure factors in the

experimental directions. Nevertheless, for computational

ef®ciency, we put the (unknown) molecule or particle into a

®ctitious unit cell that is larger than the molecule. We will also

demand that the Gaussians outside the molecular envelope be

empty. (In practice, sizes of molecules are known from their

composition; particle sizes and shapes may also be known

from lower-resolution imaging.) As long as the distances of the

Gaussian basis functions are determined by the experimental

resolution, the number of `independent' unknowns neither

increases nor decreases, in principle, by this computational

device. The structure factors are calculated on an integer grid

in the large unit cell, so they are essentially oversampled in

each dimension by the ratio of the size of the large cell to the

size of the molecule. The oversampling allows stable inter-

polation of the calculated structure-factor amplitudes from

integer h to the fractional H(i) everywhere, independent of the

density of the actual measurements. Note that interpolation

from fractional H(i) to integer h is not always a stable

procedure!

In the present implementation of SPEDEN, we get suf®-

cient accuracy with the simplest trilinear interpolation in the

amplitudes of |Fcalc(h)| if we choose the ®ctitious unit cell to be

three times larger than the molecule in each dimension. Now,

some mathematical details: the reciprocal-space vector H(i) is

within a cube, bounded by eight corners h(i, j), { j = 1, . . . , 8}

with integer values. Let us denote the fractional parts of the

components of H(i) as (H, K, L). We de®ne weights for the

eight corners, w(i, j), by taking the products of the fractional

parts of H or (1 ÿ H) with those of K or (1 ÿ K) and L or

(1 ÿ L). The cost function to be minimized now becomes

�Speden �
P

i

w0�H�i��2 jFobs�H�i��j ÿ
P8

j�1

w�i; j�jFcalc�h�i; j��j
" #2

:

�5�
A similar approach of applying crystallographic algorithms

to continuous diffraction data has been done with direct

methods (Spence et al., 2003). In that case, however, the Ewald

sphere was approximated by a plane.

2.2.3. Real-space knowledge (targets). Let us assume that

we have some, possibly uncertain, knowledge of the electron

density in parts of the unit cell from an independent source, i.e.

one that does not come from the X-ray measurement itself.

This is the kind of knowledge present when the unknown

molecule is placed into a larger unit cell and we demand that
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the unit cell be empty outside the molecule. This kind of

knowledge was also referred to as a `sensible' electron density

in the introduction. We represent this knowledge by a target

electron density ntarget(p) and by a real-space weight function

w0(p)2. It will be desirable that the actual electron density of

the molecule, �(r), as represented by n(p), be close to the

target electron density; the weight function w0(p)2 expresses

the strength of our belief in the suggested value of the electron

density. Note that target densities can be assigned in any

region of the unit cell independently of those in any other

region. The simplest way to express the above statement

mathematically is to minimize the value of the cost function

�space �
A

2
�space

XP

p�1

w0�p�2�n�p� ÿ ntarget�p��2; �6�

where A is a normalizing constant, described in Somoza et al.

(1995). The relative weight, �space, is a scale factor that

determines the strength of the real-space target relative to the

reciprocal-space target. It expresses a value judgement about

the certainty of the constraints. In practice, it is determined by

trial and error. (In the absence of information at and around

the molecule, weights are generally unity where it is known

that there is no molecule and zero elsewhere.) The same

procedure is used in EDEN.

2.2.4. Low-resolution target (phase extension). The

knowledge of the electron density at low resolution can be

expressed by a low-resolution spatial target. Crystallographers

call this phase extension. The essence is that, during the

process of the search for an optimal electron density, we try to

keep its low-resolution component as close to the known

density as possible. Actually, it is easier to carry out the

computation in reciprocal space. The low-resolution target,

Ftarget(h), is prepared from the (presumably) known electron

density, ntarget(p). Then, given the current solution n(p), we

smear out its Gaussian representation and compare it to the

equally smeared out target. We de®ne

�phasext � �phasext

P
i

w0�h�2jFsmear�h� ÿ Ftarget�h�j2; �7�

where the current `smeared' structure factors are calculated

using the low resolution, �R,

Fsmear�h� � exp�ÿ����RjF Thj�2�PP
p�1

n�p� exp�2�ih � F r�p��:

�8�
The value of �phasext is determined similarly to �space. The same

procedure is used in EDEN.

2.2.5. Minimization of the cost function. In the presence of

a target density, the actual cost function used in the computer

program is the sum of �Speden (5), �space (6) and �phasext (7):

�total � �Speden � �space � �phasext: �9�
The fast algorithm described in Somoza et al. (1995) and SzoÈ ke

et al. (1997) is always applicable to the calculation of the full

cost function, (9). There is a clear possibility of de®ning more

target functions. They are all added together to form �total,

which is minimized to ®nd the optimum electron density.

The minimization of the cost function (9) is carried out in

SPEDEN (as in EDEN) by D. Goodman's conjugate gradient

algorithm (Goodman, 1991). It has proven to be very robust

and ef®cient in years of use in EDEN. The essential properties

of the algorithm that make it so advantageous for our appli-

cation is that the positivity of the electron density, n(p) � 0, is

always enforced and that the gradient vector in real space can

be calculated by fast Fourier transform. The gradient calcu-

lation needed only a very simple modi®cation for the inter-

polation in reciprocal space, equation (5). The line search

algorithm does not use the Hessian, so matrices are never

calculated.

As with any local minimization, global convergence is not

achieved. We discussed this problem in our previous papers

and came to the conclusion that, usually, the minimum surface

of the cost function (7) is so complicated that ®nding a global

minimum would take more computer time than the age of the

universe!

2.3. Comparison to iterative algorithms

Reconstruction of the scatterer from a continuous diffrac-

tion pattern has a tangled history replete with repeated

discoveries. Some of the present authors are also guilty of

ignorance of prior work. We referred to the pioneering

insights in x2.1.2.

The `recent' period of algorithms started with the work of

Miao et al. (1998), who pointed out that the fraction of the unit

cell where the density is known is an important parameter for

convergence. In somewhat later work, with oversampled

structure factors calculated on a regular grid, the crystal-

lographic program EDEN successfully demonstrated the

recovery of the electron density using a simulated data set

from the photoactive yellow protein (SzoÈ ke, 1999). The

protein was put into a ®ctitious unit cell, twice the size of the

original one, and a target with zero density was used outside

the original unit cell of the protein. Similarly, Miao & Sayre

(2000) have studied empirically how much oversampling is

required in two- and three-dimensional reconstructions of a

simulated data set using a version of the Gerchberg±Saxton±

Fienup (GSF) algorithm. Among recent articles, we mention

Robinson et al. (2001), Williams et al. (2003), Marchesini et al.

(2003), and references therein, in addition to those mentioned

in the Introduction.

All reconstruction algorithms of oversampled diffraction

patterns use a priori information on the shape and size of the

particle. In our previous studies in crystals, we found that such

information is very valuable. For example, EDEN converges

surprisingly well for proteins at low resolution where the only

information used is that the molecule is a single `blob'. EDEN

also converges for synthetic problems with a good knowledge

of the solvent volume if it is greater than 50% (BeÂran & SzoÈ ke,

1995) or 60% (EDEN). A similar conclusion was reached in



Miao et al. (1998). In comparison, when a molecule is

embedded in a three times larger ®ctitious unit cell, the empty

`solvent' occupies ~96% of the cell volume.

As discussed previously, the reconstruction of scatterers

from their diffraction pattern is a dif®cult mathematical

problem. In many cases, the indeterminacy of the absolute

position of the object and of its handedness causes dif®culties

in convergence. That is de®nitely the case with SPEDEN so, in

that sense, SPEDEN is not a good algorithm. Empirically, the

GSF algorithm has a larger radius of convergence and deals

better with stagnation (Marchesini et al. 2003).

Another family of dif®culties arises when there is a priori

information available, but there is only incomplete and noisy

data. Under such conditions, the main questions are how to

®nd a solution that optimally takes into account the available

information and that is the best `sensible' one that reproduces

the noisy and incomplete data to its limited accuracy. It is this

second set of conditions for which SPEDEN was written.

Although, in this paper, we show only its performance for

arti®cial and `easy' but incomplete data, SPEDEN's older

sister EDEN has been shown to have those properties on a

large range of crystallographic data sets, ranging from CuO2 to

the ribosome. We expect that such properties of EDEN will be

inherited by SPEDEN, considering that their fundamental

mathematical properties are suf®ciently similar.

The best known and successful class of algorithms is the

group of iterative transform algorithms that we refer to as

Gerchberg±Saxton (GS) (Gerchberg & Saxton, 1972), and its

development, in which support constraints and feedback are

added, the GS±Fienup (GSF) or hybrid input±output algor-

ithm (Fienup, 1982; Aldroubi & Grochenig, 2001; Bauschke et

al., 2002, 2003). The essence of the GSF algorithms is that they

iterate the N-pixel data between real and reciprocal spaces via

FFTs and enforce the known constraints in each of these

spaces.

Depending on the degree of noise in the data, these algor-

ithms usually converge in about a hundred to a thousand

iterations. The weak convergence (non-divergence) of the GS

algorithm has been proven in the absence of noise (Fienup,

1982). There is no mathematical proof that these algorithms

will converge in general, but it is reasonable that, by

sequentially projecting onto the set that satis®es the real-space

constraints and the set that satis®es the reciprocal-space

constraints, the intersection (corresponding to a valid solu-

tion) should be approached. This is de®nitely true for

projections onto convex sets, but unfortunately these sets are

not convex (Stark, 1987). In practice, despite the fact that the

modulus constraint is non-convex, the algorithms often

converge even in the presence of noise in several hundred

iterations.

The main difference between the GSF algorithms and

SPEDEN is that SPEDEN does not iteratively project onto

the sets of solutions that satisfy the real-space or reciprocal-

space constraints separately, but rather it minimizes a cost

function that includes all the constraints of both spaces. It does

this by varying quantities in real space only [the n(p)'s] and

the cost evaluation only requires a forward transform from

real space to reciprocal space. As the cost function never

increases, SPEDEN reaches only a local minimum.

In spite of its `small' radius of convergence, there are some

expected advantages to SPEDEN's algorithm. In SPEDEN,

we compare the Fcalc to the Fobs by interpolating from the

samples of Fcalc(h), calculated on a regular grid, to the

measured sample vectors H. Since the gridded |Fcalc(h)| are a

complete set (because they are sampled above the Nyquist

frequency), the interpolation is stable and performed with

little error. Since an inverse transform is required in the GSF

algorithms, the measured diffraction data |Fobs(H(i))|

(recorded on Ewald spheres in reciprocal space) must be

interpolated to the gridded data points h. The observed data

might not be a complete set, especially at high resolution

where the density of samples is sparser: this may lead to error.

An additional possible dif®culty with the GSF algorithms is

that the effective number of unknowns may increase with the

size of the ®ctitious unit cell, while in SPEDEN the effective

number of unknowns is constant. Finally, in SPEDEN,

weightings can be properly applied to all data and knowledge.

The measured data are inversely weighted by their uncer-

tainties; it is a procedure equivalent to maximum-likelihood

methods and it should be optimal, at least in theory. As a side

effect, when the constraints are inconsistent, SPEDEN still

converges to a well de®ned and correct solution. (Note that for

noisy data the constraints are almost always inconsistent.)

Weightings are also applied to re¯ect our con®dence in real-

space constraints, and these weightings are consistently used in

real space.

3. Tests of the program

SPEDEN has certain built-in limitations. In particular, of

course, reconstruction can only be as good as the diffraction

measurements and the structure-factor amplitudes derived

from them. There are also other less obvious limitations. For

example, there are inherent inaccuracies due to the Gaussian

representation of the electron density in real space (SzoÈ ke,

1997). Also, the trilinear interpolation from integer (hkl)

structure-factor amplitudes to a non-integer position is only

approximate. Finally, as a fundamental limitation of any

reconstruction method, both the absolute position and the

handedness of the molecule are unde®ned.

We performed preliminary tests to verify the capabilities

and limitations of our reconstruction method using computed

and experimentally obtained diffraction patterns. In this

section, we ®rst describe the reconstruction of simple `mole-

cules' from synthetic diffraction patterns with SPEDEN.

Speci®cally, we discuss how the convergence of SPEDEN is

affected by the errors due to interpolation in reciprocal space,

by the quantity of observed structure factors, |Fobs|, by the

extent of the `known' starting model, and by the uniformity of

sampling in reciprocal space. We then describe the recon-

struction of simple two-dimensional objects from synthetic

and measured diffraction patterns with SPEDEN.
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3.1. Generation of synthetic test data

We created synthetic `molecules' in the format of the

Protein Data Bank (pdb) ®les (Berman et al., 2000). Each

molecule was composed of 15 point-like C atoms, placed at

random positions within a cube measuring 16.8 AÊ in each

dimension and `measured' to 4 AÊ resolution; these values

correspond to crystallographic B factors of 185.7 AÊ 2. The

molecule was then shifted so that its center of mass was at the

center of the cube. All our simulations were repeated using

molecules with several different random arrangements. In-

itially, the `unit cell' coincided with the dimensions of the cube

in which the atoms were placed; later, larger cells were used

and the atoms were positioned in their center. We also

generated `starting models' by removing atoms from the full

`molecule'.

Both full and partial molecules served to generate structure

factors (Fcalc), using the atomic positions and the B factors.

Starting models were generated from the Fcalc, using

SPEDEN's preprocessor, BACK, which ®nds the optimal real-

space representation for an input Fcalc. Initially, sets of

`measurements' (|Fobs|) were generated by deleting the phases

of the calculated structure factors of the full or partial mol-

ecule. The Fobs ®les so generated all had integer H(i). The

uncertainty of the measured structure factors, �(h), were

chosen to be

��h� � ��hFobsi=10� Fobs�h��1=2; �10�

with �� 0.1 for h 6� (0,0,0) and �� 0.01 for h� (0,0,0). hFobsi
is the average over all the structure factors. We used two

alternative methods to generate Fobs ®les for non-integer H(i).

In the ®rst method, we used a unit cell whose dimensions were

incommensurate with one another and with the edge of the

cube, but whose volume equaled that of the cube. The

resulting Fobs ®le, generated again from Fcalc ®les by deleting

the phases, then had its indices scaled back appropriately,

yielding fractional H(i). A different second method was also

used and will be explained in x3.6.

For each of these Fobs ®les, some constraining information is

required in order to ®nd the atom positions. We used two types

of constraints: one of them identi®ed the (approximate) empty

region; the other one used Fcalc at a considerably lower reso-

lution. We call them the empty target and the low-resolution

target, respectively. Both are based on the assumption that, at

a considerably lower resolution, the general position of atoms

as one or more `blobs' in empty space is known. The low-

resolution FScalc was prepared by smearing the full Fcalc ®le to

10 AÊ . The empty target identi®ed the empty points in terms of

a mask. Then, throughout SPEDEN's iteration process, using

the solver SOLVE, the program attempted to match the

current electron voxelÿ1 values in masked-in regions to empty

[n(p) = 0] values. The phase-extension target used the same

FScalc ®le; during the iteration process, at each step, the current

real-space solution was smeared to that low resolution in

reciprocal space and restrained to agree with that target.

3.2. Assessment of quality of reconstruction

Besides inspecting the reconstructed electron density

visually, we used four quantitative measures to compare the

reconstructed image with the electron density from the full

molecule at 4 AÊ .

(a) Real-space root-mean-square (RMS) error: we calcu-

lated the real-space electron density from the electron voxelÿ1

®les, a process we call regridding. We then calculated the RMS

error of the electron densities, �1 and �2, de®ned as

RMS � f
P

r ��1�r� ÿ �2�r��2g1=2

fPr0 �
2
1�r0��

P
r �

2
2�r�g1=2

: �11�

We permitted one ®le to be shifted with respect to the other

®le in order to minimize the distance.

(b) Phase difference: we calculated the average (amplitude-

weighted) phase difference between the Fcalc at the end of the

run and the corresponding Fcalc generated from the full

molecule.

(c) Final R factor: we calculated the crystallographic R

factor (Giacovazzo et al., 2002) at the end of the run.

(d) Count error: we compared the integrated real-space

electron density generated from a run result with the true

number of electrons as identi®ed in the pdb ®le on an atom-

by-atom basis. The integration was performed around each

atom over a sphere with a radius that was 1.5 times the grid

spacing. The ®gure of merit is the RMS error.

Of all these measures, the ®nal R factor was the least useful

to assess the quality of the reconstructed image. The R factor

tends to be lower for a small number of entries in the obser-

vation ®le since there are fewer equations to satisfy during the

reconstruction. In such a case, a visual inspection shows that

the reconstructed electron density may have little resemblance

to the 15 C atoms. However, there was a good correlation

among the other three measures. The solutions looked correct

when the phase difference between solution and full Fcalc was

less than 20�, the count error between solution and pdb model

was 0.2 or lower (out of 6), and the RMS distance measure was

less than 0.2.

3.3. Overcoming inaccuracies due to trilinear interpolation
through oversampling

For computational purposes, we placed the (unknown)

molecule or particle into a ®ctitious unit cell that is larger than

the molecule and calculated the structure factors on an integer

grid in the large unit cell, oversampled by the same ratio: the

size of the large cell to the size of the molecule. We then

calculated the structure factor at fractional H from the

structure factor at integer h using trilinear interpolation. The

interpolation error becomes smaller when larger unit cells are

used (at the expense of computation time). We studied the

effect of the unit-cell size on convergence of SPEDEN.

In the initial tests, the unit cell was the same size as the

original molecule, and the starting (known) part of the

molecule consisted of the full molecule. When the molecule

consisted of atoms on grid points and the Fobs ®les had integer

H(i), unsurprisingly SPEDEN converged, as did EDEN on the



same data set. However, we found that SPEDEN did not

converge to a unique solution if either the atoms were not on

grid points or the Fobs ®le had non-integer H(i), or both, since

the solution meandered in real space.

In subsequent tests, we generated larger unit cells and

applied a target over the empty part of the unit cell, in an

attempt to restrain the meandering problem. We embedded

the molecule in a cell that was two or three times greater in

each dimension. An empty target was used that essentially

covered the empty 7/8th or 26/27th of the unit cell, respec-

tively. We applied a high relative weight for this empty target,

and we still used the full molecule as a starting position. We

found that both the larger cell and the empty target are of

critical value in enabling SPEDEN to converge to the correct

solution. Comparing the twofold larger unit cell versus the

threefold unit cell, there was a great improvement in the latter

case. These results show that, for trilinear interpolation, it is

adequate to use a unit cell that is three times greater in each

dimension. We expect that more sophisticated interpolation

algorithms should allow use of smaller unit cells.

3.4. Dependence of reconstruction on the quantity of input
data

A threefold enlarged unit cell increases the number of

unknown amplitudes of the Gaussians, n(p), by a factor of 27.

In principle, the emptiness of the volume around the molecule

restrains the effective number of independent unknowns.

Nevertheless, if the number of equations, which is given by the

number of entries in the Fobs ®le, is not increased, it is easy for

the solver to `hide' electrons among the large number of

unknowns in the system, even when the empty target

constraint is used. In fact, we found that when we compared

the ®nal Fcalc from SOLVE against the starting Fcalc, on the

one hand, and the correct Fcalc on the other, SOLVE's ®nal

Fcalc was closer to the starting one than to the correct one. In

other words, the cost function in reciprocal space was not a

suf®ciently strong constraint in SPEDEN's algorithm, for this

synthetic problem. In a similar real case, more experimental

diffraction patterns need to be collected in order that

SPEDEN would be able to ®nd the corresponding image

without other information.

3.5. Recovery of missing atoms

In the next set of synthetic tests, we attempted to recover

missing information by starting from a partial model that

contained less than the full complement of 15 atoms. In these

simulations, we used Fobs ®les with non-integer H(i), a three-

fold enlarged unit cell, an empty target or a phase-extension

target, and randomly positioned atoms.

We found that a low-resolution spatial target signi®cantly

helps SPEDEN to converge. Fig. 1(a) shows the results of the

comparison of the reconstructed image with the electron

density from the full pdb ®le when a phase-extension target is

used. The phase-extension target was calculated at a resolu-

tion of 10 AÊ . We found that it was generally possible to

recover 5, 10 or even all 15 of the atoms. Please note that the

amount of information in such a phase-extension target is

(4 AÊ =10 AÊ )3 � 6% of the information in the perfect solution.

It was more dif®cult to reconstruct the original electron

density when we used an empty target, as shown in Fig. 1(b).

SPEDEN was able to recover 5 out of the 15 atoms, but

did not converge when 10 atoms were unknown. Perhaps

surprisingly, the case where there was no starting model at all

(0 atoms known) did consistently better than those cases

where a partial model was given as a starting condition.

3.6. Effect of non-uniform sampling on recovery

In this set of synthetic tests, we addressed the question of

how dif®cult it is to recover the molecule from a non-uniform

set of samples in reciprocal space, similar to real data sets, and

how the results compare with the reconstruction from a

uniformly sampled data set.

We generated two-dimensional diffraction patterns of the

synthetic carbon molecule for different particle orientations,

corresponding to recorded diffraction patterns in a real

experiment. The two-dimensional diffraction patterns were

linearly interpolated from a three-dimensional diffraction

pattern; the latter was calculated on an additionally double-

®ne grid over the already triple-sized unit cells, i.e. using a unit
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Results of the comparison of the reconstructed image with the electron
density from the full pdb ®le in the cases when (a) a phase-extension
target and (b) a low-resolution target are used. The phase error is given in
units of degrees.
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cell that was a total of six times larger than the molecule in

each direction. Further re®ning the grid of the three-dimen-

sional diffraction pattern did not alter the results signi®cantly.

The three-dimensional diffraction pattern, in turn, was the

Fourier transform of the gridded electron density of the

synthetic molecule.

Two-dimensional patterns do not sample the diffraction

space uniformly. The sampling density near the center of the

diffraction space is much larger than the sampling density

further away. We used a completeness measure to characterize

the sampling uniformity. The reciprocal space is divided into

cells that are 4�=a by 4�=b by 4�=c in size, where a, b and c are

the molecule sizes in each dimension. The completeness then

is the ratio of cells in reciprocal space that contain at least one

measurement over the total number of cells. Fig. 2 shows the

completeness of the input observation ®les as a function of the

number of diffraction patterns. Also shown in Fig. 2 is the

number of calculated diffraction intensities.

We then used SPEDEN to recover 7 out of the 15 atoms.

The molecule was embedded in a unit cell that was three times

larger in each dimension, and we used an empty solvent target.

Fig. 3 shows the errors of the reconstructed electron density as

a function of the number of two-dimensional diffraction

patterns. The orientations of the diffraction patterns were

chosen at random, and the calculations were repeated for four

different molecules. For comparison, also shown in Fig. 3 are

the errors of the electron density of the eight known atoms

(`partial model') and the errors of the reconstructed electron

densities when a three-dimensional diffraction pattern is used,

which was oversampled three times (`integer hkl') or six times

(`fractional hkl').

As discussed above, the R factor is not a useful measure to

assess the quality of the reconstructed image, but the RMS and

count errors are better measures for the reconstruction

quality. Surprisingly, we found that four two-dimensional

Figure 2
The completeness and length of the input observation ®les used for the
calculations shown in Fig. 3.

Figure 3
The error in the reconstructed electron density as a function of the
number of two-dimensional diffraction patterns. The orientation of the
diffraction patterns was chosen at random and the results were repeated
for four different molecules. Also shown are the error of the electron
density of the eight known atoms (`partial model') and the error of the
reconstructed electron densities for a three-times (`integer hkl') and six-
times (`fractional hkl') in-each-dimension-oversampled three-dimen-
sional diffraction pattern.

Figure 4
Planar arrangement of 37 Au balls for two-dimensional reconstruction.

Figure 5
Initial starting model used for two-dimensional reconstruction from
synthetic data.



patterns are suf®cient to reconstruct the electron density as

well as in the case when the full three-dimensional diffraction

pattern is given. Four two-dimensional patterns have a

remarkably low sampling completeness of only 14%. Further

increasing the completeness or the number of observations

does not improve the quality of the reconstruction. We would

like to note, however, that these results could be dependent on

the sparsity of the test model where positivity, enforced by

SPEDEN, is a powerful constraint. Therefore, for less-sparse

test models the number of required two-dimensional patterns

may be larger.

3.7. Recovery of two-dimensional data

In the ®nal set of tests, we demonstrate SPEDEN's ability to

recover missing information for a two-dimensional con®g-

uration of 37 Au balls in a plane. We reconstructed the Au

balls using (i) a synthetic diffraction pattern and (ii) an

experimentally obtained diffraction pattern as discussed by

He et al. (2003). In the following, we will discuss both cases,

starting with the synthetic diffraction data.

The 37 Au balls are arranged in a plane as shown in Fig. 4.

The arrangement of the balls is similar to the experimental

case discussed by He et al. (2003). The Au balls were 50 nm in

diameter. We generated an arti®cial set of `measurements'

(|Fobs|) by calculating the structure factors (Fcalc) to 30 nm
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Figure 8
Initial starting model for two-dimensional reconstruction from experi-
mental data.

Figure 9
Weight function used for two-dimensional reconstruction from experi-
mental data.

Figure 10
(a) Reconstructed electron density using experimental data. (b) SEM
Image of Au balls.

Figure 7
Reconstructed electron density using synthetic data.

Figure 6
Weight function used for two-dimensional reconstruction from synthetic
data.
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resolution and deleting the phases. The uncertainty of the

measured structure factors, �(h), were chosen according to

equation (10). We generated an initial model by smearing the

full Fcalc ®le to 90 nm, and running BACK on it. The initial

model is shown in Fig. 5. In Figs. 5±7, we only show one plane.

We also used this smeared Fcalc to generate a low-resolution

spatial target as well as an empty target outside the molecule.

The corresponding weight function is shown in Fig. 6.

We then used SPEDEN to reconstruct the Au balls. As

shown in Fig. 7, SPEDEN reconstructed the electron density

successfully. However, we further found that, if we use an

empty starting model, SPEDEN has dif®culties converging to

the correct electron density. There are two reasons for this

behavior. First, without an initial model, the symmetry of the

system is not broken and SPEDEN stagnates since the support

does not distinguish between the object and its centrosym-

metric copy. Second, the mask and the reconstructed electron

density are possibly shifted with respect to each other. If the

initial model is empty, the position of the reconstructed elec-

tron density is mostly determined in the early iteration of the

SOLVE algorithm and can be partially cut off by the solvent.

The algorithm has dif®culty shifting the result. It is necessary

to provide information about the location of the electron

density to a certain degree, for example in the form of a

smeared model. Note that the GSF algorithms are designed to

overcome these problems when there is abundant and accu-

rate data available.

We will now discuss the reconstruction of the Au balls using

experimental data. To generate a starting model, we took the

experimental |Fobs| data along with the phases obtained by He

et al. (2003) using a version of the GSF algorithm, and smeared

this data to 80 nm. The starting model is shown in Fig. 8. We

used the same data to generate a real-space target with a

target fraction of 99.7%, shown in Fig. 9. Similar to the case of

the synthetic test data, we chose �(h) according to equation

(10). We then used SPEDEN to reconstruct the Au balls. Fig.

10(a) shows the reconstructed electron density and Fig. 10(b)

shows a scanning-electron-microscope (SEM) picture of the

sample. We found that SPEDEN reconstructed the electron

density from the experimental data successfully.

4. Summary and conclusions

In this paper, we presented SPEDEN, a method to reconstruct

the electron density of single particles from their X-ray

diffraction patterns, using an adaptation of the holographic

method in crystallography. Unlike existing GSF algorithms,

SPEDEN minimizes a cost function that includes all the

constraints of both real space and reciprocal space, by varying

quantities in real space only, so that the cost evaluation

requires only a forward transform from real space to re-

ciprocal space. SPEDEN ®nds a local minimum of the cost

function using the conjugate gradient algorithm. We imple-

mented SPEDEN as a computer program and tested it on

synthetic and experimental data. Our initial results indicate

that SPEDEN works well.

This work was performed under the auspices of the US

Department of Energy by University of California, Lawrence

Livermore National Laboratory, under Contract W-7405-Eng-

48 and DOE Contract DE-AC03-76SF00098 (LBL).
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